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Abstract
The dynamical quantum Zeno effect is studied in the context of von Neumann
algebras. We identify a localized subalgebra on which the Zeno dynamics acts
by automorphisms. The Zeno dynamics coincides with the modular dynamics
of that subalgebra, if an additional assumption is satisfied. This relates the
modular operator of that subalgebra to the modular operator of the original
algebra by a variant of the Kato–Lie–Trotter product formula.
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1. Introduction

The Zeno or ‘a watched pot never boils’ effect has, over the last few decades, attracted
a lot of interest from quantum physicists, see [1–7] and the extensive list of references
in [8]. The effect, which consists in the possible impedance of quantum evolution, e.g.,
decay processes, under the influence of frequent measurement events, or, more generally,
frequent system–environment interactions, has even entered popular science texts [9]. It is a
striking example of the peculiarities of quantum theory whose origin can be traced back to the
geometry of the Hilbert space [10], which implies a quadratic short-time behaviour of transition
probabilities [11].

Here, we rely on the mathematical formulation of the strict Zeno paradox as presented by
Misra and Sudarshan in [12], i.e. the limit of infinitely frequent measurements, which we will
now briefly sketch. Given the Hamiltonian evolution U(t) = e−iHt on the Hilbert space H,
with H lower semibounded, and a projection E on H, one assumes the existence of the limits

W(t) := s-lim
n→∞ [EU(t/n)E]n
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in the strong sense onH, for all t ∈ R (this condition can be relaxed to t � 0 if a CPT-symmetry
is present). It is then shown, using methods of complex analysis, that W(t) is a strongly
continuous group, W(t + s) = W(t)W(s), for all t ∈ R, and W(−t) = W(t)∗. In particular,
one finds a lower semibounded operator B and a projection G such that BG = GB = B

which induces the Zeno dynamics: W(t) = Ge−iBtG. If one employs the initial condition
s-limt→0+ W(t) = E, one can identify G with E. Thus one sees that the Zeno dynamics is a
modified Hamiltonian dynamics, which is confined to the Zeno subspace EH.

Although the limit of infinitely frequent measurements has been argued to be unphysical
due to Heisenberg uncertainty [8], it is still of conceptual interest. This is, in particular, the
case if one wants to study the induced limiting dynamics W(t) on the Zeno subspace and to
compare it with the original one on the full space. This has, however, only been done for
simple examples [1, 13]. It turns out that in these examples the Zeno dynamics corresponds
to Hamiltonian evolution with additional constraints and boundary conditions. For example,
one finds an infinite well potential term, corresponding to Dirichlet boundary conditions,
when the projector is the multiplication with the characteristic function of an interval in the
one-dimensional case.

In this paper we show how the treatment of [12] can be carried over to the modular flow
of a von Neumann algebra A. First and foremost, this is a direct generalization of the result of
Misra and Sudarshan to dynamics whose generators are not lower semibounded. The special
role projections play for von Neumann algebras gives our generalization some additional
impact, in view of the ongoing discussion over the projection postulate. Furthermore, our
analysis can also straightforwardly be applied to KMS states of W ∗-dynamical systems for
inverse temperatures 0 < β � ∞. But what is, in our view, most important, is that our
treatment yields an explicit identification of the Zeno dynamics: it can, in favourable cases,
be shown to coincide with the unique modular flow of the localized von Neumann subalgebra
EAE. This result can be viewed as a variant of the Kato–Lie–Trotter product formula
[14, corollary 3.1.31].

In the following section, we present this generalization of the strict Zeno paradox. The
final section contains some remarks on the status of the main theorem 2.1, its weaknesses and
possible extensions, as well as an outlook towards physical applications.

2. The Zeno paradox in the context of von Neumann algebras

Theorem 2.1. Let A be a von Neumann algebra with faithful, normal state ω, represented
on the Hilbert space H with cyclic and separating vector � associated with ω. Let � be
the modular operator of (A,�). Let E ∈ A be a projection. Set AE :=EAE and define a
subspace of H by HE :=AE� ⊂ EH. Assume:

(i) for all t ∈ R, the strong operator limits

W(t) := s-lim
n→∞ [E�it/nE]n

exist, are weakly continuous in t and satisfy the initial condition

w-lim
t→0

W(t) = E.

(ii) for all t ∈ R, the following limits exist:

W(t − i/2) := s-lim
n→∞ [E�i(t−i/2)/nE]n

where the convergence is strong on the common, dense domain A�.
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Then the W(t) form a strongly continuous group of unitary operators on HE . The group W(t)

induces an automorphism group τE of AE by

τE:AE � AE �−→ τE
t (AE) := W(t)AEW(−t) = W(t)AEW(t)∗

such that (AE, τE) is a W ∗-dynamical system. The vectors W(z)AE�,AE ∈ AE , are
holomorphic in the strip 0 < −Im z < 1/2 and continuous on its boundary.

Note that AE is a von Neumann subalgebra of A, see [15, corollary 5.5.7], for which �

is cyclic for HSE and separating. Thus, � induces a faithful representation of OAE on the
closed Hilbert subspace HE , and thus all notions above are well defined.

Corollary 2.2. Let �E be a vector in HE which induces a faithful, normal state ωE onAE , and
denote by �E the modular operator of (AE, ωE). Assume further the validity of the following
additional condition:
(iii) for all AE,BE ∈ AE holds

lim
t→0

〈W(−t − i/2)AE�E,W(t − i/2)BE�E〉 = 〈
�

1/2
E AE�E,�

1/2
E BE�E

〉
.

Then τE is the modular automorphism group of (AE,�E).

The remainder of this section contains the proof of the above theorem and its corollary,
split into several lemmata. In all these, we will only use conditions (i) and (ii). Only after that
will condition (iii) be used to identify the modular group.

Set S := {z ∈ C| − 1/2 < Im z < 0}. Define operator-valued functions

Fn(z) := [E�iz/nE]n for z ∈ S n ∈ N.

The Fn(z) are operators whose domains of definition contain the common, dense domain A�.
They depend holomorphically on z in the sense that the vector-valued functions Fn(z)A� are
holomorphic on S and continuous on S for every A ∈ A. For this and the following lemma,
see [14, sections 2.5 and 5.3 and theorem 5.4.4].

Lemma 2.3. For z ∈ S and � ∈ D(�|Im z|) holds the estimate

‖Fn(z)�‖ � ‖�‖
for all n ∈ N.

Proof. Define vector-valued functions f
�,n
k (z) := [E�iz/nE]k�. These are well defined

for z ∈ S,� ∈ D(�|Im z|) and all k � n, since for such �, z we have [E�iz/nE]k−1 ∈
D(E�iz/nE). Approximate f

�,n
k−1 (z) by elements of the form Al�,Al ∈ A. Then for any

B ∈ A holds

|〈B�,E�iz/nEAl�〉| = |〈�,B∗E�iz/nEAl�
−iz/n�〉|

= |ω(B∗Eσz/n(EAl))|
� ‖B∗E�‖‖EAl�‖
� ‖B‖‖Al�‖.

Here, ω is the state on A associated with the cyclic and separating vector � (we always
identify elements of A with their representations on H) and σ denotes the modular group.
The first estimate above follows explicitly from the corresponding property of σ , see [14,
proposition 5.3.7] (the connection between faithful states of von Neumann algebras and KMS
states given by Takesaki’s theorem [14, theorem 5.3.10] is used here and in the following).
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This means ‖E�iz/nEAl�‖ � ‖Al�‖, and since Al� −→ f
�,n
k−1 (z) in the norm of H, it

follows that
∥∥f

�,n
k (z)

∥∥ �
∥∥f

�,n
k−1 (z)

∥∥. Since this holds for all k = 1, . . . , n, we see

‖Fn(z)�‖ = ∥∥[t]f �,n
n (z)

∥∥ � · · · �
∥∥f

�,n
1 (z)

∥∥ � ‖�‖
as desired. �

The estimate proved above also yields that the Fn are closable. We will denote their
closures by the same symbols in the following.

Lemma 2.4. For z ∈ S holds the representation

Fn(z)A� = (z + i)2

2π i

∫ ∞

−∞

Fn(t − i/2)A�

(t + i/2)2(t − i/2 − z)
− Fn(t)A�

(t + i)2(t − z)
dt (1)

where the integrals are taken in the sense of Bochner. One further has

0 = 1

2π i

∫ ∞

−∞

Fn(t − i/2)A�

(t + i/2)2(t − i/2 − z)
− Fn(t)A�

(t + i)2(t − z)
dt (2)

for z �∈ S.

Proof. By Cauchy’s theorem for vector-valued functions [16, theorem 3.11.3], we can write

Fn(z)A�

(z + i)2
= 1

2π i

∮
Fn(ζ )A�

(ζ + i)2(ζ − z)
dζ

where the integral runs over a closed, positively oriented contour in S, which encloses z.
We choose this contour to be the boundary of the rectangle determined by the points
{R − iε,−R − iε,−R − i(1/2 − ε), R − i(1/2 − ε)} for R > 0, 1/4 > ε > 0. By lemma 2.3,
the norms of the integrals over the paths parallel to the real line stay bounded as R → ∞,
while those of the integrals parallel to the imaginary axis vanish. Thus

Fn(z)A�

(z + i)2
= 1

2π i

∫ ∞

−∞

Fn(t − i(1/2 − ε))A�

(t + i(1/2 + ε))2(t − i(1/2 − ε) − z)
− Fn(t)A�

(t + i(1 − ε))2(t − iε − z)
dt .

For 0 < ε0 < min{|Im z|, |1/2 − Im z|} and all ε such that 0 � ε � ε0, the integrand is
bounded in norm by ‖A‖/[(1 + t2) min{|Im z − ε0|, |Im z − (1/2 − ε0)|}]. Since moreover,
in the strong sense and pointwise in t, limε→0 Fn(t − iε)A� = Fn(t)A� and limε→0 Fn(t −
i(1/2 − ε))A� = Fn(t − i/2)A�, the conditions for the application of the vector-valued
Lebesgue theorem on dominated convergence [16, theorem 3.7.9] are given and the desired
representation follows in the limit ε → 0. The vanishing of the second integral follows
analogously. �

Lemma 2.5. The strong limits F(z) := s-limn→∞ Fn(z), z ∈ S, are closable operators with
common, dense domain A� (we denote their closures by the same symbols). The integral
representation

F(z)A� = (z + i)2

2π i

∫ ∞

−∞

W(t − i/2)A�

(t + i/2)2(t − i/2 − z)
− W(t)A�

(t + i)2(t − z)
dt (3)

holds good and the functions F(z)A� are holomorphic on S, for all A ∈ A�. There exists
a projection G and a positive operator � such that � = G� = �G and �4iz = F(z) for all
z ∈ S.

Proof. Using lemma 2.3, we see that the norm of the integrand in equation (1) is
uniformly bounded in n by 2‖A‖/[(1 + t2) min{|Im z|, 1/2 −|Im z|}], which is integrable in t.
Furthermore, Fn(t)A� and Fn(t − i/2)A� converge in norm to W(t)A� and W(t − i/2)A�,
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respectively, by assumptions (i) and (ii) of theorem 2.1. Thus, we can again apply Lebesgue’s
theorem on dominated convergence to infer the existence of the limits limn→∞ Fn(z)A� for
all A ∈ A. This defines linear operators on the common, dense domain A�. Again, by
the estimate of lemma 2.3, we have F(z)An� → 0 if ‖An‖ → 0, and therefore the F(z)

are closable. The validity of equation (3) is then clear. Since the bound noted above is
uniform in n and all the functions Fn(z)A� are holomorphic in S, we can apply the Stieltjes–
Vitali theorem [16, theorem 3.14.1] to deduce the stated holomorphy of F(z)A�. We now
consider the operators F(−is), 0 < s < 1/2. Using the same properties of �,E, one
sees that these operators are self-adjoint, and in fact, positive: namely, the limits are densely
defined, symmetric and closable operators, and an analytic vector for �1/2 is also analytic for
F(−is), 0 < s < 1/2. Thus the F(−is) possess a common, dense set of analytic vectors.
Under these circumstances, the F(−is) are essentially self-adjoint, and we denote their unique,
self-adjoint extension by the same symbol. We now follow [12] to show that the functional
equation F(−i(s + t)) = F(−is)F (−it) holds for s, t > 0 such that s + t < 1/2. To this end,
consider first the case that s and t are rationally related, i.e. there exist p, q ∈ N such that

s + t

r(p + q)
= s

rp
= t

rq
for all r ∈ N.

Then [
E�

s+t
r(p+q) E

]r(p+q)

A� =
[
E�

s
rp E

]rp [
E�

t
rq E

]rq

A� A ∈ A

from which the claim follows in the limit r → ∞. The general case follows since
F(−is)A� is holomorphic and, therefore, also strongly continuous in s for all A ∈ A.
Now set � = F(−i/4). By the spectral calculus for unbounded operators [15, section 5.6],
the positive powers �σ exist for 0 < σ � 1, and are positive operators with domain containing
the common, dense domain A�. They satisfy the functional equation �σ+τ = �σ ·̂ �τ for
σ, τ > 0 such that σ + τ � 1, and where ·̂ denotes the closure of the operator product. The
solution to this functional equation with initial condition � = F(−i/4) is unique and thus
follows �σ = F(−iσ/4), since the operators F satisfy the same functional equation, and
all operators in question depend continuously on σ , in the strong sense when applied to the
common core A�. For 1/4 � s < 1/2 we have F(−is) = F(−i/4)F (−i(s − 1/4)) =
�F(−i(s − 1/4)) = ��4s−1 = �4s , which finally shows the identity F(−is) = �4s

for 0 < s < 1/2. Now, for every A ∈ A, �4izA� extends to a holomorphic function on
S which coincides with F(z)A� on the segment {−is | 0 < s < 1/2} as we have just
seen. The identity theorem for vector-valued, holomorphic functions [16, theorem 3.11.5]
then implies �4izA� = F(z)A�, z ∈ S and all A ∈ A. Thus �4iz = F(z) holds on S as an
identity of densely defined, closed operators. Setting G = P([0,∞)), where P is the spectral
resolution of the identity for �, we see that we can write � = G� = �G, concluding this
proof. �

Lemma 2.6. It holds G = E and W(t) = E�4itE, for all t.

Proof. Using (3) we can write, adding a zero contribution to that integral representation,

〈B�,F(t − iη)A�〉 = (t + i − iη)2

2π i

∫ ∞

−∞
ds

{
〈B�,W(s − i/2)A�〉

(s + i/2)2(s − t − i/2 + iη)

− 〈B�,W(s)A�〉
(s + i)2(s − t + iη)

− 〈B�,W(s − i/2)A�〉
(s + i/2)2(s − t − i/2 − iη)

+
〈B�,W(s)A�〉

(s + i)2(s − t − iη)

}
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where the integral over the last two terms is zero, as can be seen from (2) and the same
arguments that were used to derive (3). This yields

〈B�,F(t − iη)A�〉 = (t + i − iη)2

π

∫ ∞

−∞

η · 〈B�,W(s − i/2)A�〉
(s + i/2)2((s − t − i/2)2 + η2)

− η · 〈B�,W(s)A�〉
(s + i)2((s − t)2 + η2)

ds.

As η → 0+, the first term under the integral vanishes, while the second reproduces the
integrable function 〈A�,W(t)B�〉/(t + i)2 as the boundary value of its Poisson transformation.
Thus we have seen

lim
η→0+

〈A�,F(t − iη)B�〉 = 〈A�,W(t)B�〉

for given A,B ∈ A, and almost all t ∈ R. Since the integral is uniformly bounded in η, the
boundary value of this Poisson transformation is continuous in t, see, e.g., [17, section 5.4].
The same holds for 〈A�,W(t)B�〉 by assumption (i) of theorem 2.1, and therefore the
limiting identity at η = 0 follows for all t. On the other hand, since G�4itG is strongly
continuous in t, we have limη→0+ 〈A�,F(t − iη)B�〉 = 〈A�,G�4itGB�〉 for all t. Thus,
the identity of bounded operators W(t) = G�4itG holds for all t. By assumption we have
w-limt→0 W(t) = E, thus W(s)W ∗(s) = G�4is�−4isG = G implies G = E. �

Lemma 2.7. The action τE
t :AE � AE �−→ τE

t (AE) = �4itAE�−4it is a strongly continuous
group of automorphisms of AE .

Proof. For AE = EAE ∈ AE we have E�it/nEAEE�−it/nE = Eσt/n(AE)E, where σ is the
modular group of (A,�), and this shows Fn(t)AEFn(−t) ∈ AE for all n. Since AE is weakly
closed and Fn(t)AEFn(−t) converges strongly, and therefore also weakly, by assumption (i)
of theorem 2.1, it converges to an element of AE . Since ‖Fn(t)AEFn(−t)‖ � ‖AE‖ for all n,
the limit mapping is continuous on AE . By lemma 2.6, it equals τE

t , as defined above, for
all t. Since �4it is a strongly continuous group of unitary operators on EH, the assertion
follows. �

Proof of theorem 2.1 and corollary 2.2. We first note that W(−t) = W(t)∗ can be seen by
direct methods as in [12]. Secondly, since τE is an automorphism group of AE, it follows
by definition of HE that the W(t) leave that subspace invariant and thus form a unitary group
on it. The stated analyticity properties of W are contained in the conclusions of lemmata 2.5
and 2.6.

Let us now turn to the identification of W with the modular group of the pair (AE,�E).
An argument as was used in the proof of lemma 2.6 shows

〈A�,�4i(t−i/2)B�〉 = lim
η→1/2−

〈A�,F(t − iη)B�〉 = 〈A�,W(t − i/2)B�〉

for given A,B ∈ A, and almost all t ∈ R. Additionally, as mentioned in the proof of
lemma 2.6, the boundary value of the Poisson transformation �4i(t−i/2) is weakly continuous
on A�. From this, the density of A� in H, and assumption (iii) of theorem 2.1, it follows for
AE,BE ∈ AE that

〈�2AE�E,�2AE�E〉 = lim
t→0

〈�4i(−t−i/2)BE�E,�4i(t−i/2)AE�E〉
= lim

t→0
〈W(−t − i/2)AE�E,W(t − i/2)AE�E〉

= 〈�1/2AE�E,�1/2AE�E〉
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where the weak continuity has been used in the first and the identity above in the second step.
Now by the modular condition satisfied by �, this becomes

〈�2AE�E,�2AE�E〉 = 〈B∗
E�E,A∗

E�E〉.
This is the modular condition for the automorphism group τE with respect to (AE,�E). The
assertion of the theorem follows by the uniqueness of the modular group [15, theorem 9.2.16]
and the preceding three lemmata. �

3. Conclusions

Let us comment a bit on the status of theorem 2.1. It is stronger than the result of [12]
in that it generalizes it to the KMS states of W ∗-dynamical systems at inverse temperatures
0 < β � ∞. This is exactly the framework in which a strip of analyticity of width β above
(or below, depending on convention) the real axis exists, which is the sole condition needed to
apply the methods of complex analysis used extensively to prove theorem 2.1. This shows that
the theorem of Misra and Sudarshan [12] can be extended to the cases in which the Hamiltonian
is not lower semibounded, but in which its negative spectral parts are ‘exponentially damped’
(see [18, section V.2.1] for the precise meaning of these notions). This is in contrast to the
counterexample in [12], where those authors state that lower semiboundedness is essential.
That counterexample involves the unitary group generated by the momentum operator, which
does not fulfil any requirement of exponential damping of the negative spectral part, and thus
violates our analyticity assumptions. See also the discussion in [3, section 3], where it is noted
that lower semiboundedness does not seem to be important for the Zeno effect in general.

But more interestingly, corollary 2.2 identifies the induced Zeno dynamics uniquely, as
already mentioned in the introduction. For this, however, we needed the additional assumption
(iii) in corollary 2.2, and this assumption is not a simple consequence of the modular condition
of the original system. But note that we did not use assumption (iii) until after lemma 2.7,so that
in any case we get an automorphic Zeno dynamics onAE , which however might differ from the
modular dynamics, depending on the choice of state on AE , but has the analyticity properties
needed to check the modular condition for a given state as in corollary 2.2. Assumption (iii) is
therefore only a formal condition for �E to be a τE-KMS state, essentially a straightforward
transcription of the modular condition itself. One simple example of an equilibrium state for
the Zeno dynamics can be given in the case when the projector E commutes with the initial
dynamics, i.e. [E,�] = 0. Then the Zeno dynamics simplifes to W(t) = E�itE and the state
�E := E�/‖E�‖ satisfies condition (iii). Other, less trivial, examples can arise from Gibbs
equilibria, as is shown in [19].

As already remarked in [12], the relatively strong assumptions of the theorem might be
difficult to prove in concrete cases. It seems more likely that in studying physical models
one would rather identify the nature of the induced Zeno dynamics directly, as for example
in [1, 13]. Therefore, theorem 2.1 and corollary 2.2 are to be considered as a mathematical
gedanken experiment, which might be helpful in guiding physical intuition.

However, some relaxations of the assumptions of theorem 2.1 are possible in special cases
[12]: firstly, if the theory contains a CPT-operator, the conclusions of theorem 2.1 already
follow if one assumes the convergence of the limits defining W(t),W(t − i/2) only for positive
times. Secondly, if we restrict our attention to von Neumann algebras A that allow a faithful
representation on a separable Hilbert space H, we can drop the assumption of weak continuity
of the limits W(t), W(t − i/2) used in the proof of lemma 2.6, by the argument given in [12]:
first show that limη→0+ 〈A�,F(t − iη)B�〉 = 〈A�,W(t)B�〉 for t outside an exceptional
null set NA,B ⊂ R. Then, there exists a countable set C ⊂ A such that C� is dense in H and
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the countable union
⋃

A,B∈C NA,B is still a null set. One easily shows that the limit relation
holds true outside this set in the weak sense on H and proceeds from there using the strong
continuity of G�4itG as in [12].

An application to simple examples of quantum statistical mechanics, such as spin systems,
seems possible. There, if the projection E projects to some pure state outside a bounded region,
one is in a case where one would presume the Zeno dynamics to exist. One could expect to
find the dynamics of the bounded region of the spin system (a matrix model) with appropriate
boundary conditions, to be determined by the action of E on the boundary layer (see [20] for a
complementary discussion). This and further applications in the context of quantum statistical
mechanics are found in a subsequent paper [19].

There will also appear a subtle point in physical applications: when considering models
one usually deals with C∗-dynamical systems rather than W ∗-dynamical ones, i.e. the relevant
algebras are norm rather than weakly closed. For these, the set of KMS states at given inverse
temperature is in general a nonempty, weak ∗-closed, convex subset of the state space [14,
section 5.3.2]. Thus, one always has to choose a KMS state and an associated representation
to work within. If one fixes a KMS state, say ω with vector representative �, and wants to
consider the induced Zeno dynamics determined by a projector E, the restricted subsytem AE

will still have in general a multitude of KMS states of its own. The point is that it is not
a priori clear that the Zeno dynamics will leave a chosen state ωE invariant. It may happen
that the Zeno dynamics transforms the KMS states of AE into each other in a nontrivial way.
In this case the Zeno dynamics is not unitary, i.e. reversible. This is a reflection of the same
problem appearing in the quantum mechanical context [1, section 5]. This cannot happen,
however, within the context of theorem 2.1, for if the Zeno dynamics satisfies condition (iii),
then invariance of �E follows directly [14, proposition 5.3.3]. But even if the equilibrium
condition (iii) of that theorem is not satisfied, lemma 2.7 still assures that the induced dynamics
is unitary. For these problems, see also the recent approach of Gustafson [7], who tackles the
associated problem of self-adjointness of the generator of the Zeno dynamics (in [7], one also
finds some important remarks on the history of the subject).

Finally, we remark that we were in part motivated by the proposal to take the modular flow
of observable algebras as a definition of physical time [21–23], for example on a generally
relativistic background, when the usual concepts are less useful. However, the relation between
modular groups and spacetime is an intricate one, as local quantum physics has taught us
[24, 25], and this thread of thought might be just beginning.
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